O ct 2 00 3 Extensions of Banach Lie - Poisson spaces

نویسنده

  • Tudor S. Ratiu
چکیده

The extension of Banach Lie-Poisson spaces is studied and linked to the extension of a special class of Banach Lie algebras. The case of W -algebras is given particular attention. Semidirect products and the extension of the restricted Banach Lie-Poisson space by the Banach Lie-Poisson space of compact operators are given as examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 03 34 5 v 2 [ m at h . SG ] 3 1 M ar 2 00 5 Symplectic leaves in real Banach Lie - Poisson spaces

We present several large classes of real Banach Lie-Poisson spaces whose characteristic distributions are integrable, the integral manifolds being symplectic leaves just as in finite dimensions. We also investigate when these leaves are embedded submanifolds or when they have Kähler structures. Our results apply to the real Banach Lie-Poisson spaces provided by the self-adjoint parts of predual...

متن کامل

ar X iv : m at h / 04 03 34 5 v 1 [ m at h . SG ] 2 2 M ar 2 00 4 Symplectic leaves in real Banach Lie - Poisson spaces

We present several large classes of real Banach Lie-Poisson spaces whose characteristic distributions are integrable, the integral manifolds being symplectic leaves just as in finite dimensions. We also investigate when these leaves are embedded submanifolds or when they have Kähler structures. Our results apply to the real Banach Lie-Poisson spaces provided by the self-adjoint parts of predual...

متن کامل

m at h . FA ] 1 1 O ct 2 00 4 EXTENSIONS BY SPACES OF CONTINUOUS FUNCTIONS

We characterize the Banach spaces X such that Ext(X, C(K)) = 0 for every compact space K.

متن کامل

Banach Lie-poisson Spaces and Reduction

The category of Banach Lie-Poisson spaces is introduced and studied. It is shown that the category of W ∗-algebras can be considered as one of its subcategories. Examples and applications of Banach Lie-Poisson spaces to quantization and integration of Hamiltonian systems are given. The relationship between classical and quantum reduction is discussed.

متن کامل

Poisson geometry of the infinite Toda lattice

Many important conservative systems have a non canonical Hamiltonian formulation in terms of Lie-Poisson brackets. For integrable systems, this is usually the first of two or more compatible brackets. With few notable exceptions, such as the Euler, Poisson-Vlasov, KdV, or sine-Gordon equations, for example, for infinite dimensional systems this Lie-Poisson bracket formulation is mostly formal. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008